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 This is the official guide to codebreaking and 
cryptanalysis, issued by the Bureau of Security and 
Signals Intelligence. It should not be shared with 
individuals outside the organization.  
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Substitution Ciphers 
Caesar shift ciphers 
The easiest method of enciphering a text message is to 
replace each letter by another, shifted along the 
alphabet by a fixed amount. So for example every letter a 
may be replaced by D, and every letter b by the letter E 
and so on.  

Applying this rule to the previous paragraph produces the 
text 

 
WKH HDVLHVW PHWKRG RI HQFLSKHULQJ D WHAW PHVVDJH LV WR 
UHSODFH HDFK OHWWHU EB DQRWKHU XVLQJ D ILAHG UXOH, VR IRU 
HADPSOH HYHUB OHWWHU D PDB EH UHSODFHG EB G, DQG HYHUB 
OHWWHU E EB WKH OHWWHU H DQG VR RQ.  

 

Note the convention in these notes that ciphertext is 
written in capital letters, while plaintext is usually 
lowercase. 

 

Such a cipher is known as a shift cipher since the 
letters of the alphabet are shifted by a fixed amount, 
and as a Caesar shift since such ciphers were used by 
Julius Caesar.  

 

You can build a simple machine, a cipher wheel, to help 
apply the Caesar cipher consisting of two paper discs,one 
small and one large, and each carrying the alphabet 
evenly spaced around their rim as on the next figure. 
Print them, cut them out and join them at the centre with 
a paper clip. Next fill in the letters on the outer rim 
of the large wheel and you are ready to go.  
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 First, choose your shift. There are 25 Caesar shift 
ciphers, (and another one of them taking a to A which 
does nothing to the text) which you get by turning the 
wheel to its 26 different positions. To carry out the 
Caesar shift cipher above, turn the wheel so the D on the 
outer rim matches up with a on the inner wheel. Find each 
letter of the message, on the inner wheel and read its 
counterpart from the outer rim without moving the wheel. 
To decrypt a message this way you reverse the reading 
direction, finding each letter of the ciphertext on the 
outer wheel and reading its twin on the inner wheel. 

BOSS Challenge: Decipher the following message, which has 
been encrypted using the Casear shift cipher which takes 
a to M. 

NAEE FAB EQODQF 

With only 25 shift ciphers to try, it is not too hard to 
decipher a Caesar cipher by brute force. This just means 
we try each of the possible ciphers in turn until we find 
one that works. This process is a lot simpler using the 
cipher wheel. 

BOSS Challenge: Brute force the following message to see 
what it says. 

HTSLWFYZQFYNTSX, DTZ FWJ STB FS JCUJWY FY GWJFPNSL YMJ 
HFJXFW HNUMJW, MFWWD 

A first Exploit 
Just because we can use brute force to solve the cipher 
doesn’t mean we have to. If that was all there was to 
codebreaking it would be entirely the province of 
computer scientists and engineers who are very smart at 
speeding up that sort of computation. At the cutting edge 
of cryptography, it is the interaction of those 
disciplines with mathematics which enables governments 
(and criminal hackers) to read poorly encrypted 
communications, and we can begin to see where mathematics 
comes into the picture even when considering a simple 
cipher like the Caesar shift. 
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 Notice that in order to know which shift cipher has been 
used it is enough to work out where one of the letters 
has been shifted. That tells us the amount of shift and 
therefore the entire cipher. This can be done, for 
example, by discovering which character has replaced the 
plaintext letter e. The letter e has been chosen here for 
a reason, it is the single most common letter to be found 
in English text (curiously, it is largely because the 
word the is one of the most common words - we will come 
back to that point in a minute).  

BOSS Challenge: Count the letter frequencies in the 
following ciphertext to see for yourself which character 
is the most common. 

 
WKH HDVLHVW PHWKRG RI HQFLSKHULQJ D WHAW PHVVDJH LV WR 
UHSODFH HDFK OHWWHU EB DQRWKHU XVLQJ D ILAHG UXOH, VR IRU 
HADPSOH HYHUB OHWWHU D PDB EH UHSODFHG EB G, DQG HYHUB 
OHWWHU E EB WKH OHWWHU H DQG VR RQ.  

  

You can speed this up using the very useful online text 
analyser at  

http://www.dcode.fr/frequency-analysis 

You should see that the letter H appears more than twice 
as frequently than any other letter, more than 20% of the 
time. That is because this is the encryption of the first 
paragraph of this guide using the Caesar shift which 
takes e to H 
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 If we run the 

online 
frequency 
counter on 
the first 
paragraph of 
the guide we 
can compare 
them with the 
frequencies 
from other 
passages of 

English text. Here we have done that with a lead story 
from the BBC news site. 

 

The frequencies are not quite the same partly because the 
plaintext for this cipher was carefully written to ensure 
it had a lot of the letter e in it to make a point. All 
the same, you can see the same general pattern, and this 
is often a good way to identify which letter has been 
used to encrypt the letter e and for a Caesar shift 
cipher that is all we need.  

This is clearly a weakness in the cipher, and finding 
such a weakness is called finding an exploit in the 
trade.  

There is another weakness in the message we studied above 
which is not so much to do with the cipher as the way it 
has been implemented. Whoever encrypted the message left 
spaces in the text so that we can see the shape of the 
words. This gives us another exploit. We can guess that 
the three-letters starting the sentence form a 3-letter 
word, and, as remarked above, the most common 3 letter 
word in English is the. This fits with our frequency 
count which suggests (correctly) that e has been replaced 
by H, and a quick check shows that the Caesar shift by 3 
does indeed encode the word the as WKH, and it is easy to 
complete the decryption. 

1st Paragraph0

0.05

0.1

0.15

0.2

A B C D E F G H I J K L M N O P Q R S T V W X Y Z

Character Frequencies

1st Paragraph BBC News
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BOSS Challenge: Try to break this Caesar cipher using one 
of the exploits described above and without brute force. 

DW WKUHH R’FORFN SUHFLVHOB L ZDV DW EDNHU VWUHHW, EXW 
KROPHV KDG QRW BHW UHWXUQHG. WKH ODQGODGB LQIRUPHG PH 
WKDW KH KDG OHIW WKH KRXVH VKRUWOB DIWHU HLJKW R’FORFN LQ 
WKH PRUQLQJ. L VDW GRZQ EHVLGH WKH ILUH, KRZHYHU, ZLWK 
WKH LQWHQWLRQ RI DZDLWLQJ KLP, KRZHYHU ORQJ KH PLJKW EH. 
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Mathematical ciphers 
 
Despite the advantages for an agent in using keyword 
substitution, most of the ciphers produced and studied by 
modern cryptographers are automated and rely on 
mathematics to provide the encryption. On the other side 
of the cyber battle lie the cryptanalysts, who spend 
every waking hour applying more mathematics to try to 
break these ciphers. 

A good way to start thinking mathematically is to revisit 
the Caesar shift cipher which can be viewed as a type of 
addition. 

Each letter is first encoded by its numerical position in 
the alphabet. For reasons lost in the mists of time the 
convention is that we take a to lie in position 0, b in 
position 1 and so on, and the Caesar shift is then given 
by adding a constant to each of the positions. So if a is 
shifted to D that corresponds to moving a three places 
along the alphabet, or in other words to adding 3 to all 
the positions. You have to think a bit about how to deal 
with x, y and z here since 23+3=26, 24+3=27 and 25+3=28, and 
there are no letters in those positions, but since those 
letters move to A, B, C in positions 0,1,2 we can fix 
that by changing our addition so that when the answer is 
bigger than 26 we subtract 26 to put it back in the 
required range.  

You can think of this as putting the numbers 0 - 25 on a 
clock face and adding them by counting round the face. We 
do this when telling the time. Three hours after 11 
o’clock is 2 o’clock, which we get by adding 3+11 = 14, 
then subtracting 12 to get 2.  

The military use the 24-hour clock, and 4 hours after 
what they call “23 Hundred Hours” is 3am, which is given 

by adding 4 +23 =27, then subtracting 24.  
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 Mathematicians call this modular arithmetic. The standard 
12-hour clock is just arithmetic mod 12, the military 
clock is arithmetic mod 24, and the Caesar cipher is 
carried out using arithmetic mod 26.  

BOSS Challenge: Carry out the following additions mod 26 

3+8 

21 + 6 

13+18  

21+21 

Of course, other languages have different alphabets. The 
Norweigan alphabet has 29 letters, so for them the Caesar 
cipher is carried out using arithmetic mod 29, while 
modern Greek has 24 letters, so the Caesar shift cipher 
in Greek looks just like using the 24-hour clock.  

Just to recap, returning to our Caesar shift cipher, the 
shift by 3 sends 6 to 6+3=9, which corresponds to mapping 
the plaintext letter g to the ciphertext letter J. At the 
end of the alphabet we have x mapping to A, y mapping to 
B and z mapping to C which correspond to the modular 
arithmetic 23+3=0 mod 26, 24+3=1 mod 26 and 25+3=2 mod 26. 

There is a convenient shorthand for the Caesar shift by 
n, given by  

x → x+n. 

Here we are using x to stand for the position of a 
letter, and n to stand for the shift amount, i.e., x and 
n are each one of the values 1–26, rather than letters in 
the English alphabet.  The shift is defined by the 
integer n, which can take any one of 26 values, and this 
gives all 26 Caesar shift ciphers. Putting n=0 we don’t 
move the letters at all, which is not much use, so in 
practice,as we noted in the first section, there are only 
25 different useable Caesar shift ciphers. 
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 Now we know about modular arithmetic we can introduce a 
new class of mathematical ciphers known as the affine 
shift ciphers. These exploit the fact that we can 
multiply as well as add in modular arithmetic. If you 
look back at the last BOSS challenge you will see that 
you were asked to compute 21+21. Clearly, we should think 
of this as 2x21, and the answer is 16 mod 26 since 2x21 =42 

and we subtract 26 to get 16 mod 26. If we want to compute 

3x21 then we just add 21+21+21 then subtract 26 until we get 
a number in the range 1-25. 

BOSS Challenge: Compute the following products mod 26: 

2x23 

3x9 

7x15 

19x15 

It is slightly complicated to set up modular arithmetic, 
but, once you have the hang of it, it is rather easy to 
do so we will practice by working through an example. 

The affine shift x→3x+5 
We start as before with the position table. 

a b c d e f g h i j k l m n o p q r s t u v w x y z 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

This time instead of replacing a position x with the 
number x+3 we will replace it by the number 3x+5, where 
this number is interpreted appropriately. So, for 
example, 2 → (3x2)+5 = 11, means that the plaintext letter c 
maps to the ciphertext letter L,  while 8 → (3x8)+5 = 29 = 26+3, 
so we interpret this as 3, and the plaintext letter i 
maps to the ciphertext letter C.  

As with the Caesar shift cipher, whenever the result of 
the computation is larger than 25, we subtract 26 to make 
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 it smaller. Unlike the Caesar shift, we might have to do 
this more than once until it becomes small enough. 

BOSS Challenge: Encrypt the following message from the 
Sherlock Holmes novel Moriarty by Anthony Horowtiz, using 
the affine shift cipher x→3x+5. 

Professor Moriarty. Meet me at the Cafe Royal, London. 
One o'clock, May the twelfth. Wear a red tulip. 

For example, consider what happens to the letter u. Its 
position in the alphabet is 20, so if we apply the affine 
shift x→3x+5 it moves position 20 to position 65 = (3x20)+5. 
This is too big, so we subtract 26 to get position 65-26 = 
39. This is also too big, so we subtract 26 again to get 
39-26=13.  

So the plaintext letter u is replaced by the ciphertext 
letter N. 

We can also think of this as computing   

(3x20)+5=65 

and then take the remainder after division by 26.  

Applying this to the whole alphabet gives us the 
following encryption/decryption table.  

The top row gives the plaintext characters; the second 
row their positions; the third row gives their positions 
after applying the affine shift; the final row shows the 
corresponding ciphertext character. 

The affine shift table corresponding to x→3x+5 

a b c d e f g h i j k l m n o p q r s t u v w x y z 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

5 8 11 14 17 20 23 0 3 6 9 12 15 18 21 24 1 4 7 10 13 16 19 22 25 2 

F I L O R U X A D G J M P S V Y B E H K N Q T W Z C 
 

BOSS Challenge: Encrypt the following message from the 
Sherlock Holmes novel Moriarty by Anthony Horowtiz, using 
the affine shift cipher x→3x+5. 
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 Professor Moriarty. Meet me at the Cafe Royal, London. 
One o'clock, May the twelfth. Wear a red tulip. 

You can make a new cipher wheel to help you generate this 
affine shift cipher as follows. Fill out the outer ring 
with the letters A-Z starting at the top and missing 
skipping three steps at a time so it looks like this to 
start. 

 

BOSS Challenge: Complete the wheel 

 

Now you can replace the Caesar shift outer wheel with 
this one. Lining up the a on the inner rim with A on the 
new outer rim will give you a wheel that implements the 
affine shift cipher x->3x. Moving the wheel round so that 
a lines up with B implements x->3x+1, and lining it up 
with F implements the cipher x->3x+5. Once you have built 

B
A

C
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 your cipher wheel you can check that this works by 
comparing the result with the table above. 

BOSS Challenge: Use your cipher wheel to encrypt Harry’s 
name using the affine shift cipher x->3x+5 and then using 
the table, sometimes called a lookup table, and check you 
get the same answer. 

There are a whole host of other affine shift ciphers 
given by replacing the multiplier 3 and the shift 5, 
giving us a rich source of different ciphers. The Caesar 
shift ciphers are special cases where we take the 
multiplier to be 1.  

Using the blank outer wheel you can make your own cipher 
wheels for any of the affine shift ciphers. Choose a 
multiplier a and a shift b we get an affine shift cipher 
which we write in shorthand form as  

x → ax+b. 

Compare this to the following Caesar shift table  

As before you fill in the letter A at the top of the 
outer rim and then skip a places around the wheel to put 
B, a further a places to put C and so on.  

Now consider the Caesar shift table corresponding to 
x→x+13 

a b c d e f g h i j k l m n o p q r s t u v w x y z 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

13 14 15 16 17 18 19 20 21 22 23 24 25 0 1 2 3 4 5 6 7 8 9 10 11 12 
N O P Q R S T U V W X Y Z A B C D E F G H I J K L M 
 

As with the affine shift x→3x+5 the letter e is enciphered 
as R so if we intercepted a message enciphered with an 
affine shift and in which the most common letter was R we 
wouldn’t be sure which of these two ciphers had been 
used. Our exploit has been weakened, but all is not lost. 
Consider the second most common letter in English, the 
letter t. In the Caesar shift table it is encrypted as 
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 the ciphertext letter G, while in the affine shift table 
it is encrypted as K, so these are definitely different 
ciphers, and frequency checking will tell us which one 
has been used. 

BOSS Challenge: Decide which of the following affine 
shift ciphers, x→x+13  or x→3x+5 has been used to encrypt 
this message: 

"KAR YVMDLR HFDO AR TFHS'K TRFEDSX ADH HRFK IRMK." FMRW 
KNESRO KV MVVJ FK GFLJ. 

Thinking of our Caesar shift cipher x → x+13 as an affine 
shift cipher with multiplier 1, we can see that two 
different affine shift ciphers can encrypt the letter e 
in the same way, so it is no longer sufficient to 
discover the letter substituting for e in order to crack 
the message.  

This happened because there are two things we need to 
work out to determine which affine shift cipher has been 
used, the multiplier a, and the shift b. Mathematicians 
say that there are “two degrees of freedom” in the choice 
of cipher. 

To nail down these two numbers we might hope that 
deciphering two letters is sufficient. Luckily if we know 
two values of the expression ax+b we can often solve the 
two corresponding equations to find the numbers a and b.  

We may be more familiar with doing this to solve pairs of 
equations using the more traditional “real” numbers, 
where the solution involves subtraction and division. The 
same method works for modular arithmetic, with one 
important warning. 

We cannot always divide in modular arithmetic. 

 

You can see why this is important using the following 
example.  
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 To see why this might be a problem, suppose we try to use 
the rule x →2x, doubling all the positions in the 
alphabet.  

The affine shift table corresponding to x→2x 

a b c d e f g h i j k l m n o p q r s t u v w x y z 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24 
A C E G I K M O Q S U W Y A C E G I K M O Q S U W Y 
 

We see that the first thirteen letters of the alphabet 
get encrypted exactly the same way as the last thirteen, 
so we can’t expect to be able to decrypt the message. If 
we did get a message encrypted using this table and tried 
to decipher the ciphertext letter I we wouldn’t be sure 
whether we should read that as the plaintext letter e or 
the alternative, r. 

In terms of the affine shift function x→2x both 4 and 17 
are taken to the same answer, 8 mod 26. 

This shows that we have to be careful with our choice of 
multiplier a when defining an affine shift cipher  

x → ax + b 

Every encryption needs to be reversible so it can be 
decrypted by the person we are seding the message to, 
which means we have to be able to reverse the steps in 
it. We can regard affine shift encryption as a two-stage 
process illustrated by the following diagram 

 

 

 

Decryption is then the reverse of this: 

 

x ax+bmultiply by a
ax

add b
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It doesn’t matter which value we choose for the addition 
term b as we can always subtract it, but if we choose the 
multiplication factor a carelessly we might not be able 
to divide by it. If we look back at our example on the 
last page, where we chose a = 2, we saw that  

2x4 = 2x17 mod 26. 

If we try to cancel the multiplier 2 we get that  

4=17 mod 26, 

which is clearly wrong.  

What is going on here? It is just that in modular 
arithmetic you cannot always divide! The same thing 
happens in usual arithmetic if you try to divide by 0, it 
is just that in modular arithmetic there are other cases 
where division goes wrong too.  

Luckily the number theorists worked all this out a long 
time ago, and there is a simple rule: 

In mod 26 arithmetic you can divide by any odd number 
which is not a multiple of 13. 

It is easiest to think of division (when it is allowed) 
as given by multiplying by an inverse. In more the more 
familiar world of standard arithmetic, the inverse of 2 
is ½, so dividing by 2 is the same as multiplying by ½. 
When carrying out arithmetic mod 26 the inverses are 
given below: 

 

a 1 3 5 7 9 11 15 17 19 21 23 25 

a-1 1 9 21 15 3 19 7 23 11 5 17 25 

 

y a-1(y-b)subtract b
y-b

“divide by a”
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 Division by 3 mod 26 is the same as multiplication by 9 
because  

3 x 9 = 1 mod 26. 

so 9 is the equivalent of 1/3 in arithmetic mod 26. 

Similarly, according to this table, division by 15 is 
given by multiplying by 7, and this is because  

7 x 15 = 105 = (4 x 26) + 1 = 1 mod 26. 

So 7 is the equivalent of 1/15 in arithmetic mod 26. Notice 
that also, 3 is the equivalent of 1/9 and 15 is the 
equivalent of 1/7, so these “modular inverses” behave a 
lot like the fractions we are used to. 

BOSS Challenge: Solve the equation 19y = 1 mod 26 to find a 
value of y that works. (Hint you need to “divide both 
sides by 19”, but remember that this means multiplying by 
the inverse of 19 mod 26. 

All this is to say that the enciphering rule defines a 
function from the alphabet to itself, and if the message 
is to be decipherable then this encryption function needs 
to be reversible. In the world of modular arithmetic, the 
multiplication function x → ax mod n can be reversed if and 
only if the only number that divides into both the 
multiplier a and the modulus n is 1. There is a fancy 
term for this. We say that  

a is coprime to n. 

For our affine shift ciphers we can use any 
multiplication factor a coprime to 26, and there are 12 of 
them: all the odd numbers not divisible by 13 as shown in 
the table above. 

This means that we we have 12 possible choices for the 
mulitplier a, and 26 choices for the shift b, yielding 312 
affine shift ciphers. 
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 The numbers a and b used to define an affine shift cipher 
x→ax+b are called the key for the cipher. We usually write 
the key as the pair (a,b). As we just saw, there are a 
total of 312 possible keys for an affine shift cipher, 
compared with the 26 possible keys for a Caesar shift 
cipher.  

This all makes a brute force attack (without frequency 
analysis) less practical than the much simpler situation 
for the Caesar shift ciphers, where there are only 26 
possibilities, but certainly a small team could carry out 
such an attack quickly, and frequency analysis can help 
us to speed things up as we will now see.  

 

A mathematical solution to the affine shift cipher 
In order to solve a Caesar shift cipher without using 
brute force, we needed an exploit, and we used the fact 
that the letter e is the most common letter in English. 
Once we have found the most common letter in the 
ciphertext we can assume that it represents e, and use 
that to tell us which Caesar shift has been used.  

In order to pin down an affine shift cipher x→ax+b we need 
to identify two of the plaintext letters. It is easiest 
to spot common letters and the two most common letters in 
an English text are usually e and t, with e the most 
common.  

Because of this we assume that the two most common 
ciphertext letters stand in for the plaintext letters e 
and t and try to solve the corresponding equations to 
find the encryption key pair (a,b).  

BOSS Challenge: Find the two most common letters in the 
following ciphertext: 

CER'G UTTCKQ SEG E DUUO DMRRCRW JZQ TMLL LQRWJZ UT JZQ 
ZUMGQ, ZCWZ MX UR JZQ JUX. CJ SEG JZQ URLY DUUO JZEJ SEG 
ELSEYG LUKIQN—ELQV ZEN URLY HQQR CR JZQDQ JZDQQ UD TUMD 
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 JCOQG, ERN RQPQD UR ZCG USR. SZQR ZQ SEG YUMRWQD, ZQ ZEN 
TERJEGCBQN JZEJ JZQDQ OCWZJ HQ GUOQJZCRW GJDERWQ MX JZQDQ 
. . . E JCOQ OEKZCRQ UD E MTU. HMJ CJ SEG URLY ER UTTCKQ 
SCJZ E NQGI, E KUMXLQ UT TCLCRW KEHCRQJG, GZQLPQG TMLL UT 
XEXQDG ERN HUUIG. HERI GJMTT—JZEJ'G SZEJ CER GECN. QPQR 
GU, ELQV SERJQN JU WU MX JZQDQ RUS. 

"JZQ XULCKQ GECN ZQ SEGR'J SQEDCRW ZCG GQEJ HQLJ." ELQV 
JMDRQN JU LUUI EJ FEKI. 

GZQ RUNNQN. "YQEZ. JZEJ'G SZEJ JZQY GECN." 

"NUQGR'J JZEJ GQQO GJDERWQ JU YUM? YUM IRUS ZUS KEDQTML 
ZQ SEG. ZQ ELSEYG SUDQ ZCG GQEJ HQLJ. ZQ SUMLNR'J QPQR 
NDCPQ OQ EDUMRN JZQ KUDRQD SCJZUMJ OEICRW OQ XMJ OCRQ 
UR." 

FEKI JZUMWZJ TUD E OUOQRJ, JZQR GZDMWWQN. "YQEZ, CJ CG 
GJDERWQ," GZQ GECN. "HMJ JZEJ OMGJ ZEPQ HQQR JZQ SEY CJ 
SEG. SZY SUMLN JZQ XULCKQ ZEPQ LCQN?"  

The two most common letters in the cipher text are Q and 
J appearing respectively, roughly, 13% and 10% of the 
time. We guess that this means e is encrypted as Q and t 
as J.  

Now we roll up our sleeves and start to do some 
mathematics. Remember, e is in position 4 and Q is in 
position 16 in the alphabet, so in terms of the modular 
arithmetic this tells us that 4a  +  b  =  16  mod  26 . 

Similarly, t is in position 19 and J is in position 9 in 
the alphabet, so we also know that 19a +  b  =  9  mod  26. 

If we take the difference of the terms on the left-hand 
side of these equations we get 19a-4a=15a, while the 
difference on the right hand side is 9-16 = -7, so we get 

15a  =  -7  mod  26. 

How do we interpret -7 mod 26? Just as we had to subtract 
26 to reduce a “too big” number, we have to add it to 
make a “too small” number big enough, and since -7+26=19 we 
get the equation 
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 15a = 19 mod 26 . 

Now we want to “divide both sides by 15”, which, as we 
noted above, is the same thing as multiplying by 7 mod 26.  

Multiplying the left-hand side of our equation by 7 gives 

7x(15a) =(7x15)a = 105a = (104+1)a = ((8x26)+1)a = a  mod 26. 

so, the left hand side is just a, which is what we are 
looking for.  

Now multiply the right-hand side by 7 as well 

7x19=133=130+3=(5x26)+3=3 mod 26, 

so we see that a=3. Substituting that value into the 
first equation  

5a+b=19 mod 26 

gives us 15+b=19, which gives b=4, so our affine shift 
cipher is x→3x+4. 

We have found the key to our affine shift cipher, the 
pair (3,4). 

The Affine shift table corresponding to x→3x+4 

a b c d e f g h i j k l m n o p q r s t u v w x y z 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

4 7 10 13 16 19 22 25 2 5 8 11 14 17 20 23 0 3 6 9 12 15 18 21 24 1 
E H K N Q T W Z C F I L O R U X A D G J M P S V Y B 
 

Remember that the bottom row corresponds to the 
ciphertext while the top row gives the corresponding 
plaintext letters. Now consider the first word of the 
ciphertext: Cer'g.  

We look up each of these letters in the bottom row of the 
table to get the decrypt: Ian’s 

This is looking hopeful. If we carry on we find an 
extract from the excellent Alex Rider novel Stormbreaker 
by Anthony Horowtiz. As he said to Harry, "Alex Rider 
loves codes and ciphers!” 
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 Here is the start of the full decrypt: 

Ian's office was a room running the full length of the 
house, high up on the top. It was the only room that was 
always locked—Alex had only been in there three or four 
times, and never on his own. When he was younger, he had 
fantasized that there might be something strange up there 
. . . a time machine or a UFO. But it was only an office 
with a desk, a couple of filing cabinets, shelves full of 
papers and books. Bank stuff—that's what Ian said. Even 
so, Alex wanted to go up there now. 

"The police said he wasn't wearing his seat belt." Alex 
turned to look at Jack. 

She nodded. "Yeah. That's what they said." 

"Doesn't that seem strange to you? You know how careful 
he was. He always wore his seat belt. He wouldn't even 
drive me around the corner without making me put mine 
on." 

BOSS Challenge: Complete the decrypt by deciphering the 
last paragraph 

FEKI JZUMWZJ TUD E OUOQRJ, JZQR GZDMWWQN. "YQEZ, CJ CG 
GJDERWQ," GZQ GECN. "HMJ JZEJ OMGJ ZEPQ HQQR JZQ SEY CJ 
SEG. SZY SUMLN JZQ XULCKQ ZEPQ LCQN?"  
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Enlarging the keyspace 
The affine shift cipher was a lot more work to crack than 
the Caesar shift because there were so many more 
possibilities. Twelve times as many, corresponding to the 
twelve possible choices of the mutltiplier a in the 
formula 

x → ax + b. 

It is a general principle of modern cryptography that the 
bigger the keypspace, the safer the cipher. This was 
first articulated by Dutch cryptographer Auguste 
Kerchoffs around 1883. 
 
“A cryptographic system should be secure even if 
everything about the system, except the key, is public 
knowledge.” 

If the keyspace is small then the system can’t be secure, 
so modern ciphers have huge keyspaces as part of their 
design. A modern Advanced Encryption Standard cipher 
(AES) has over 1077 possible keys. Even with the fastest 

current computers chained together it would take over 1051 
years to crack such a cipher by brute force, which is the 
reason it is one of the standards for high security 
encryption.  

One disadvantage of AES is that you need to know how to 
do arithmetic in several different number systems as well 
as to carry out vector and matrix calculations, all of 
which make it an advanced topic at University level. It 
is certainly not the sort of thing an agent could use on 
the run. Luckily there are other ciphers that provide 
some level of security while still being usable in the 
field.
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Keyword substitution ciphers 
These were introduced by security services as a highly 
secure, reliable and easy to use field cipher for agents. 
Of course, security depends on the ability of the enemy 
to crack the cipher and they would be hopelessly 
inadequate against computer attacks, but they are still 
many times harder to break than the Caesar shift cipher 
as we will later see. 

To build a keyword substitution cipher we design an 
encryption table by choosing a keyword or phrase which is 
used to jumble the alphabet as follows. 

First write down the phrase, with no spaces between the 
letters and omitting any repeated characters, then 
continue round the alphabet in order until every letter 
appears exactly once, and write the list under the 
standard alphabet: 

 

a b c d e f g h i j k l m n o p q r s t u v w x y z 

S I M P O N Q R T U V W X Y Z A B C D E F G H J K L 

 

Here we have chosen the key word SIMPSONS, which appears 
in the shaded boxes above. The second and third letter S 
are omitted and we continue the alphabet from the first 
unused letter after the last used letter, N, which is Q.  

Of course, if the key phrase is carefully chosen (for 

example “The quick brown fox jumps over the lazy dog”) 
there might not be any letters left to use up but such a 
choice is not necessary. If instead of using a genuine 
word or phrase we allow ourselves to use any ordering of 
the letters in our ciphertext alphabet then the number of 
such ciphers is  

26!=26 × 25 × 24 × 23 × … × 2 × 1 

Which mathematicians calls “26 factorial”. It is 
surprisingly big – approximately 1026. As Tom Briggs from 

Bletchley pointed out, 26! is about a quadrillion times 
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 the number of neurons in the human brain, or about 25 
times the total amount of data storage in the world (40 
Zettabytes). With so many possibilities for the cipher it 
is impossible to try them all by hand, so brute force 
cannot be used to attack the problem.  

On the other hand a fully random encryption table would 
be very difficult for an agent to reliably memorise (they 
work under conditions of extreme stress after all) so a 
genuine word or phrase is likely to have been used, and 
this reduces the number of ciphers considerably. 
According to the Oxford English Dictionary authorities 
“there are, at the very least, a quarter of a million 
distinct English words”, which would still make a brute 
force attack impossible without the aid of a computer, 
but frequency analysis works, especially if we can see 
the word shapes. 

Consider the text 

VEP HYXHLVHTP MO AWFJYFLT H RFNEPS HJNEHAPV FL VEFU ZHC 
FU VEHV FV FU PHUC VM KPKMSFUP VEP IPCZMSY MS IPCNESHUP, 
HLY EPLRP VEP RFNEPS HJNEHAPV. VEFU FU FKNMSVHLV, APRHWUP 
FO VEP UPLYPS EHU VM IPPN VEP RFNEPS HJNEHAPV ML H NFPRP 
MO NHNPS, VEP PLPKC RHL RHNVWSP VEP NHNPS, YFURMXPS VEP 
IPC, HLY SPHY HLC RMKKWLFRHVFMLU VEHV EHXP APPL PLRSCNVPY 
ZFVE FV. EMZPXPS FO VEP IPC RHL AP RMKKFVVPY VM KPKMSC FV 
FU JPUU JFIPJC VM OHJJ FLVM PLPKC EHLYU. 

As before we notice that the first word has three letters 
and, since it occurs several times, VEP may well be the 
word the. This gives a strong hint that the letter e is 
enciphered as the letter P in the cipher.  

Of course, other three letter words are possible, e.g., 
“and” or “but”. Nonetheless a quick check shows us that 
the letter P is the most common letter in the ciphertext, 
so it is reasonable to assume that the correct decryption 
translates P to e.  

This also suggests that V stands for t and E for h, 
allowing us to begin to decipher the message.  
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 We will continue to use the convention that UPPERCASE 
LETTERS denote enciphered letters and lowercase letters 
denote plaintext characters: 

 
VEP HYXHLVHTP MO AWFJYFLT H RFNEPS HJNEHAPV FL VEFU  
the      t  e                  he     h  et    th    
 
ZHC FU VEHV FV FU PHUC VM KPKMSFUP VEP IPCZMSY MS 
       th t  t    e    t   e     e the  e          
 
IPCNESHUP, HLY EPLRP VEP RFNEPS HJNEHAPV. VEFU FU    
 e  h   e,     he  e the    he     h  et. th       
 
FKNMSVHLV, APRHWUP FO VEP UPLYPS EHU VM IPPN VEP 
     t  t,  e    e    the  e  e  h   t   ee  the  
 
RFNEPS HJNEHAPV ML H NFPRP MO NHNPS, VEP PLPKC RHL  
   he     h  et        e e       e , the e e        
 
RHNVWSP VEP NHNPS, YFURMXPS VEP IPC, HLY SPHY HLC  
   t  e the    e ,       e  the  e ,      e        
 
RMKKWLFRHVFMLU VEHV EHXP APPL PLRSCNVPY ZFVE FV.  
         t     th t h  e  ee  e     te    th  t.  
 
EMZPXPS FO VEP IPC RHL AP RMKKFVVPY VM KPKMSC FV FU 
h  e e     the  e       e      tte  t   e      t     
 
JPUU JFIPJC VM OHJJ FLVM PLPKC EHLYU. 
 e      e   t         t  e e   h    . 
 

Reading carefully we see the single letter word H, and 
the four letter word thHt circled above, and guess that H 
is almost certainly the letter a. Making that replacement 
throughout the ciphertext we get the following, where we 
are using our upper/lowercase convention to save space 
but leaving the uppercase encrypted letters black so we 
can see them more easily: 
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the aYXaLtaTe MO AWFJYFLT a RFNheS aJNhaAet FL thFU ZaC 
FU that Ft FU eaUC tM KeKMSFUe the IeCZMSY MS IeCNhSaUe, 
aLY heLRe the RFNheS aJNhaAet. thFU FU FKNMStaLt, AeRaWUe 
FO the UeLYeS haU tM IeeN the RFNheS aJNhaAet ML a NFeRe 
MO NaNeS, the eLeKC RaL RaNtWSe the NaNeS, YFURMXeS the 
IeC, aLY SeaY aLC RMKKWLFRatFMLU that haXe AeeL eLRSCNteY 
ZFth Ft. hMZeXeS FO the IeC RaL Ae RMKKFtteY tM KeKMSC Ft 
FU JeUU JFIeJC tM OaJJ FLtM eLeKC haLYU. 

 

Now in English the two 2-letter words ending with “t” are 
“at” and “it”, and we already think that the plaintext 
letter a is encrypted as H, so the letter F probably 
stands for the letter i and the word Ft circled above 
decrypts as it. This is followed by another 2-letter 
word, FU beginning with the same letter so together these 
are likely to decrypt to it is, meaning that U is the 
cipher for s.  

Making these substitutions throughout the text we get: 

the aYXaLtaTe MO AWiJYiLT a RiNheS aJNhaAet iL this ZaC 
is that it is easC tM KeKMSise the IeCZMSY MS IeCNhSase, 
aLY heLRe the RiNheS aJNhaAet. this is iKNMStaLt, AeRaWse 
iO the seLYeS has tM IeeN the RiNheS aJNhaAet ML a NieRe 
MO NaNeS, the eLeKC RaL RaNtWSe the NaNeS, YisRMXeS the 
IeC, aLY SeaY aLC RMKKWLiRatFMLs that haXe AeeL eLRSCNteY 
Zith it. hMZeXeS iO the IeC RaL Ae RMKKitteY tM KeKMSC it 
is Jess JiIeJC tM OaJJ iLtM eLeKC haLYs. 

Before reading on it is worth looking at this to see if 
you can spot any other likely substitutions of your own. 

Appropriate guesses would be: 

tM   = to,  so M = o 

haXe = have,  so     X = v 

easC = easy,  so     C = y 

As we identify more letters it gets easier to guess even 
more and we can decipher the text to get the following 
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 extract from Simon Singh’s excellent history of codes and 
ciphers, The Code Book: 

 

“The advantage of building a cipher alphabet in this way 
is that it is easy to memorise the keyword or key-phrase, 
and hence the cipher alphabet. This is important, because 
if the sender has to keep the cipher alphabet on a piece 
of paper, the enemy can capture the paper, discover the 
key, and read any communications that have been encrypted 
with it. However, if the key can be committed to memory 
it is less likely to fall into enemy hands.” 

 

BOSS CHALLENGE: Can you identify the keyword for this 
cipher? 
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Sharpening the attack 
 

Frequency analysis 
We have already seen how frequency analysis can help us 
to identify common letters and common words. We can go 
further with this analysis, comparing the number of 
occurrences of each character in the cipher text with an 
expected frequency for the standard English alphabet. In 
the plain text above a character count gives us the 
following table of occurrences. 

a b c d e f g h i  k l m n o p  r s t u v w  y  

32 7 14 11 55 5 2 26 27  6 9 11 20 18 16  17 17 35 4 4 4  12  

 

The consonants h,s,t are relatively common in plaintext 
as are the vowels a,e,i and o.  

The vowel u is much less common and any occurrence of q 
is almost guaranteed to be followed by a u. It is also 
possible to analyse common letter pairs and triples. as 
we have seen the triple “the” is the most common in 
English.  

Cryptographers refer to triples of letters as trigrams 
and pairs of letters as digraphs or bigrams, and you can 
look up standard, bigram and trigram frequency tables on 
the web, for example at: 

http://practicalcryptography.com/cryptanalysis/letter-
frequencies-various-languages/english-letter-frequencies/ 
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Hardening the cipher 
Disguising the word structure 
A chink in the armour of our ciphers so far has been the 
preservation of word structure. This allows us to spot 
common words. In order to avoid such weakness 
cryptographers usually remove punctuation and block the 
characters together in groups of four or five, so our 
previous cipher text looks like 

VEPHY XHLVH TPMOA WFJYF LTHRF NEPSH JNEHA PVFLV EFUZH 
CFUVE HVFVF UPHUC VMKPK MSFUP VEPIP CZMSY MSIPC NESHU 
PHLYE PLRPV EPRFN EPSHJ NEHAP VVEFU FUFKN MSVHL VAPRH 
WUPFO VEPUP LYPSE HUVMI PPNVE PRFNE PSHJN EHAPV MLHNF 
PRPMO NHNPS VEPPL PKCRH LRHNV WSPVE PNHNP SYFUR MXPSV 
EPIPC HLYSP HYHLC RMKKW LFRHV FMLUV EHVEH XPAPP LPLRS 
CNVPY ZFVEF VEMZP XPSFO VEPIP CRHLA PRMKK FVVPY VMKPK 
MSCFV FUJPU UJFIP JCVMO HJJFL VMPLP KCEHL YU 

Usually the length of the text groups does not matter, 
however, in analysing some ciphers (like the infamous 
Vigenère cipher which we will study later) a carelessly 
chosen block length may make the length of the key more 
apparent, since it can reveal important pattern repeats 
more easily. 

To attack a message that that has been grouped in this 
way we have to work with letters not words. To do so we 
use the frequency analysis described above, together with 
a little judgement (or luck!). The process can be hard, 
but wars have been won or lost on the back of it, and so 
have fortunes. As remarked by Jericho, the lead character 
in Robert Harris’s novel “Enigma”,  

“It was hard going, but Jericho didn’t mind. He was taking 
action, that was the point. It was the same as code-
breaking. However hopeless the situation, the rule was 
always to do something. No cryptogram, Alan Turing used 
to say, was ever solved by simply staring at it.”  
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 For a cryptographer judgement comes in two forms, 
discovering exploits like frequency analysis, but also in 
finding cribs. A crib is a word or phrase that we expect 
to find in the plaintext somewhere. For example if we 
intercept an encrypted report from a weather station then 
we might expect to find the word windspeed in the 
message. If we are planning to intercept a lot of 
messages from that source and we have some idea of what 
type of cipher to expect we can encrypt the crib using 
lots of possible keys, and keep a list of the results to 
hand so we can check them against the message. This is 
quite feasible on a modern computer once you have learned 
to programme. You can write a small programme that 
encrypts the crib using all the keyword substitution 
ciphers arising from words in a standard dictionary, and 
get the programme look for the results in the ciphertext 
to narrow down which keyword might have been used. 

Even without the power of modern computers, this was 
partly how Dilly Knox, Alan Turing and other codebreakers 
at Bletchley managed to break into the Enigma cipher and 
other Nazi codes.  It was while trying to automate their 
attack on the Lorentz cipher that Turing, together with 
Max Newman and Tommy Flowers developed one of the first 
modern computers, Colossus, which you can see in action 
at the National Computer Museum at Bletchley. 

 

BOSS Challenge: Use a crib to determine which Caesar 
shift cipher has been used to encrypt the following 
extract from an enemy weather ship, and decrypt it. 

DPUKZWLLK MVYAF RUVAZ 
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MultilingUal codebreaking 
The task facing Turing and the others at Bletchley was 
made even harder by the fact that they were trying to 
break a cipher in a foreign language. Luckily, many of 
the staff there had some knowledge of German which they 
could use to find their own exploits. As we noted above, 
different languages have different alphabets and 
different idiosyncracies which can help to weaken ciphers 
used to protect communications written in them.  

Sometimes a professional cryptanalyst doesn’t even know 
what language the message was written in. A radio message 
intercepted in Africa during the Second World War might 
have been written in Italian, French, German or a local 
African dialect. Luckily frequency analysis can help to 
identify the language. 

One of the most unusual is the Khmer language, the 
official dialect of Cambodia, which has the world’s 
largest alphabet. With 74 characters. You can read all 
about this fascinating script at 

https://www.worldatlas.com/articles/which-language-has-
the-largest-alphabet.html 
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Polyalphabetic ciphers 
The main weakness allowing us to tackle a substitution 
cipher is the irregularity in the distribution of letters 
in English text 

In order to remove this weakness from a cipher it is 
necessary to disguise the frequencies of letters in the 
plaintext and the easiest way to do this is by using a 
polyalphabetic cipher. In such a cipher each plaintext 
letter may be encoded in more than one way so that, for 
example, the letter e may be enciphered as both X and G 
within the ciphertext. One problem with this approach is 

that if X and G both encode for e we don’t have enough 
letters left to encode the other 25 letters. One elegant 
solution to this problem is a famous French diplomatic 
cipher. 

The VigenEre cipher  
The Vigenère cipher uses multiple Caesar shift ciphers in 
a repeating pattern to encrypt the text, with the pattern 
often described by a keyword or keyphrase. So for 
example, if the keyword is HARRY then the first letter is 
encrypted by the shift a →  H, the second by the shift a →  a 
(so it is not changed at all), the third and fourth by 
the shifts given by a → R and the fith by the shift a → Y. 
Then the pattern repeats so that the sixth character of 
the plaintext is encrypted by the shift a → H, the seventh 
by a → A, the eighth by a → R and so on. As long as the key 
word is kept secret this cipher is very hard to break. 

To implement this effectively the cipher clerk in the 
embassy would have used a lookup table called the Tabula 
Recta. Each row of the table corresponds to one of the 
Caesar shift ciphers making it very easy to look them up 
quickly and accurately. 
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 a b c d e f g h i j k l m n o p q r s t u v w x y z 
A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A 
C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B 
D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 
E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D 
F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E 
G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F 
H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G 
I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H 
J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I 
K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J 
L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K 
M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L 
N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M 
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N 
P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O 
Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P 
R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q 
S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R 
T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S 
U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T 
V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U 
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V 
X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W 
Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X 
Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y 
 

Given the task of enciphering the message attack at dawn 
using the keyword NOW, the cipher clerk would produce the 
following table 

N O W N O W N O W N O W 
a t t a c k a t d a w n 
N H P          

 

Looking up the letter in the row labelled N and the 
column labelled a gives the ciphertext letter N, looking 
up row O column t gives H, row W column t gives P and so 
on.  

BOSS Challenge: Complete the encryption of this message. 
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Notice the key feature of the Vigenère cipher, that the 
same letter of the plaintext can be enciphered in 
different ways! The letter t is encrypted as H then P in 
the same message which messes up the frequency counts. 
This makes it much tougher to crack, and for centuries it 
was thought to be uncrackable. The same example above 
does show us something else though, the first t in attack 
and the t in at are both encrypted as H because they are 
both underneath the letter O in the repeated keyword. 
This repeat appears 6 letters apart. Also the letter a 
appears three times under the keyword letter N, in the 
1st, 4th, 7th and 10th positions and these repeats appear 3 
letters apart. This is happening because the keyword has 
length 3. This allows us to guess that the keyword has 
length 3. We have found an exploit! 

BOSS Challenge: By computing the gaps between repeated 
occurences of the letter a in the following Vigenère 
cipher, make a guess at the length of the keyword. 

EHZVW UVQAF ROLFZ QYWGO ACWPK RVUJQ IBLHF JNOGK UHYDP 
HYHXW XJAFK KAYVB LGGDY SKKAG RIAFK KAQZS DSI 

Even knowing the length of the keyword there is still a 
lot of work to do, but it turns out that this is largely 
a matter of carrying out a version of the frequency 
analysis attack we used so successfully on substitution 
ciphers like the shift and keyword ciphers. 

This exploit, based on the analysis of repeats in the 
text was discovered independently by the British 
mathematician Charles Babbage and the Polish 
cryptographer Friedrich Kasiski. While you can’t always 
just use repeating patterns of single letters, an 
analysis of repeated strings of letters can often be used 
to determine the length of the keyword, and once this is 
done a standard frequency analysis is applied to each 
part of the ciphertext encoded by a single cipher. A very 
good account of Babbage-Kasiski deciphering can be read 

in Chapter 2 of Simon Singh’s The Code Book. 
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We will now use this method together to try to break the 
message in the previous BOSS Challenge, making use of the 
fact that our agents have broken into the embassy and 
recovered a note by the cipher clerk in which he has left 
the word structure intact. 

Eh zv w uvqafro lfzqywgoa cw pkrvuj qiblhfjnogku hydp hyh 
xwxjaf kka yvblggdys, kka griaf kka qzsdsi. 

In the previous BOSS challenge, you should have noticed 
that the gaps between the consecutive occurences of the 
letter A are  

12 32 4 12 4 4 

These are all multiples of 4, suggesting that the keyword 
has length 4, so we expect the first, fifth, ninth, 
thirteenth letters and so on should all have been 
encrypted by the same Caesar shift cipher. These letters 
appear as 

E...W...A...L...Y...A...K...J...L...N...U...P...X...A...A
...L...Y...A...A...A...D...S...I... 

Looking at the letter W in position 5 of the ciphertext 
we notice that it appears as a single letter word, so W 
probably represents a or i, meaning that the Caesar shift 
used here either maps i or a to W. The first of these 
would take e to M, which doesn’t appear in this sequence, 
and even though we are only looking at a small collection 
of letters there are enough that we would expect to see 
at least one representing e. (Recall that the letter e 
appears around 12% of the time in English text.) So we 
consider the second option which takes a to W, so takes e 
to A. This deciphers that part of the message as 

I...A...E...P...C...E...O...N...P...R...Y...T...B...E...E
...P...C...E...E...E...H...W...M... 

 

Converting the ciphertext to uppercase and making the W 
to a decrypt for the first, fifth, ninth letters and so 
on, writing them in lower case we see the following: 
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iH ZV a UVQeFRO pFZQcWGOe CW PoRVUn QIBpHFJrOGKy HYDt HYH 
bWXJeF KKe YVBpGGDcS, KKe GRIeF KKe QZShSI. 

Notice the three letter word KKe. The most common three 
letter word in English ending with the letter e is “the”, 
which suggests that the first K corresponds to the Caesar 
shift taking t to K, while the second corresponds to the 
shift taking h to K. Trying these we get a possible 
partial message decrypt as follows. 

It Zs a gVnerRl prZnciGle oW modErn cIyptFgraGhy tYat tYe 
biXger Khe kVypsGace, Khe sRfer Khe cZpheI. 

You should recognize this as part of Kerchoffs’s 
principle discussed before, and we can complete the 
decrypt by inspection. 

BOSS Challenge: Complete the decryption of this text, and 
work out which keyword was used for this Vigenère cipher. 

 

The index of coincidence 
There is another very clever method to tackle the 
Vigenère cipher using something called the index of 
coincidence (ioc). Like frequency analysis, this is based 
on the idea that there are hidden patterns in English 
which make certain letter combinations more likely than 
others. In this case we study the likelihood that if we 
pick two letters at random in the ciphertext then they 
will be the same. This idea was first suggested by 
William Friedman in 1922.  

BOSS Challenge: What do you think the index of 
coincidence should be for the following sentence? 

Hi Harry! 

There are 7 letters in this sentence, and so there are 42 
ways of picking a pair of letters at random. Of these 
only H and r repeat and they only repeat once each. The 
odds of picking the letter H twice are 2/42 (we can pick 
the H in Hi first then the H in Harry, or the other way 
round) and the odds of picking the two Rs is the same, so 
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the odds of picking two letters the same is 
2/42+2/42=2/21, or about 10%. We usually give the index 
of coincidence as a decimal. Here it is 0.09524, while 
for a standard English text, the index of coincidence is 
usually about 0.0686 so this is a little high. 

The index of coincidence can be computed for any text. 
For each letter of the alphabet you work out the 
probability that two letters picked at random are that 
letter. To do this you must first count the number of 
letters in the text, which we will denote by n, then 
count the number of copies of the letter you are 
interested in, which we will denote by N. Now the odds of 
picking our given letter as the first one of the pair is 
N/n, and the odds that the second one is also the same 
letter is (N-1)/(n-1), so the odds of picking it twice at 
random is the product 

𝑁
𝑛
(𝑁 − 1)
(𝑛 − 1)

. 

We can work this out for each letter of the alphabet and 
add those together to get the odds of picking two letters 
the same. 

As we said above, if we consider a standard long English 
text then the index of coincidence will be around 0.0686. 
On the other hand, if we compute it for a genuinely 
random sequence then each letter will appear roughly 1 in 
every 26 characters so the index of coincidence for a 
random string of letters will be about 0.038466.  

A typical ciphertext will have an ioc of something 
between these values. If the value is close to 0.0686 then 
it is likely that we are considering a substitution 
cipher like the shift or keyword ciphers we considered 
above. Another possibility is that we are looking at a 
jumbled text like one of the transposition ciphers we 
will study later in this handbook. 

BOSS Challenge: Compute the index of coincidence in the 
following phrase: This is no coincidence! 
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If the ioc is lower than you expect and the text you are 
studying is not just random, then something subtle is 
going on and we may well be looking at a polyalphabetic 
cipher. The weakness in the Vigenère cipher is that for 
some number k every kth letter in the ciphertext has been 
encrypted with the same Caesar shift, so if we knew k we 
could carry out a standard frequency analysis on those 
letters to figure out the shift. The index of coincidence 
can help us find k in the following way. 

For each k from 1 to around 9, we split the text into 
blocks of size k and stack the blocks. Next, we read down 
the columns to extract the sequences of letters k apart 
in the text. This is essentially what we did when we 
attacked the Vigenère example above, though we didn’t 
bother typing it in that form.  

Now we compute the index of coincidence for each column. 
If our k is not the repeat length used by the Vigenère 
cipher then the letters in the column will have been 
encrypted by a number of different shifts, so they will 
be more random and we will see a low index of 
coincidence. When we arrange the text into the correct 
number of columns, corresponding to the keylength, then 
the ioc should be much closer to 0.0686 for each of the 
columns.  

The process is a little laborious, but also somewhat 
miraculous, and once you learn to code or to use a 
spreadsheet, it can be automated, making it easy to find 
the length of a Vigenère cipher key. Once that is done, 
you can carry out frequency analysis on the columns to 
work out which cipher was used for each one.  

This is a very powerful exploit. The Vigenère cipher was 
the main diplomatic cipher across Europe for a long time, 
and was widely considered intractable. The index of 
coincidence attack makes it almost routine to decipher 
messages using it. 



 

Harry 

39 

BOSS Challenge: By computing the index of coincidence of 
the following ciphertext decide whether it is likely to 
have been encrypted using a keyword substitution cipher 
or a Vigenère cipher. You do not need to decipher it 
(unless you want to!). 

Ckaxop h okcy el vou kpk el vou ccy, jng zuvcyqzg uqbcs 
qtf tyrkaqxa pdzgsboildig vhmcuyycayupz xgf tuxilt zq 
iuiqtu zjl Wuxlhtoldz Evtk cut Iawxkt Zsnqvb, MEOG’y 
qyymkuqr phck. Kai uxlhz hbdivpet yhi zq whuvlsz Dyyzkzx 
Mqcuxptutv jesobdoehjoqui, ckax g ulsxga couzyup ae 
jgjhera ckuzqmgz ikpa re hvhkknd iqbdztpuy. Wutkt axk 
nlqjgyinkw el Csqyvhyx Fldtkzjup, pjy hphyv ougf, axk 
qywgppigvpet yhi mkcut uwqig pd Ccauxihjk Jvkyg hdj 
qmvoepqrnf sgol ytvv rkkuw up axk hphyv vv Tqcusdlh 
tkuuzgld tkuuzgld. 
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The Enigma machine 
The most famous polyalphabetic cipher in the world must 
be the Enigma cipher, implemented by the engineer Arthur 
Scherbius as the Enigma machine. The machine was first 
designed around 1918 and was sold in large numbers to 
banks and commercial enterprises, before becoming the new 
standard for secure communications in the German 
military.  

Polish cryptographers, no doubt worried about the 
expansion of the powerful military next door, studied the 
machine in depth throughout the 1930s and as war broke 
out they risked their lives 
to share what they knew with 
their colleagues at the 
Government Code and Cypher 
School(GCCS) in the UK. This 
was the fore-runner of GCHQ, 
the modern Government 
Communications Headquarters. 

The Enigma machine is an 
electro- mechanical device 
which implements a polyalphabetic cipher which in 
practice encrypts each individual letter of a message 
with its own custom cipher. Each of these is a cipher 
which switches the letters of the alphabet in pairs, so 
if a particular letter a is encrypted as G then if g had 
been at that position in the message it would have been 
encrypted as A. To know how a letter would be encrypted 
you need to know not just what letter it was, but 
whereabouts it is in the message and how the machine was 
configured when you started. If you set up two Enigma 
machines in exactly the same way and ask them to encrypt 
a message they will both encrypt it the same. 
Furthermore, if one of them is given the encrypted 
message from the first one and reset to the original 
settings, then rather than encrypt it further it will 
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decrypt it instead. That is because letters had been 
switched in pairs as we remarked above.  

The “key” for an Enigma cipher describes the way the 
machine is to be set up for a particular communication, 
and there are an incredibly large number of ways this can 
be done. The military Enigma had over 
103,325,660,891,587,134,000,000 different settings so brute force 
was never going to be enough to crack this code even with 
huge teams of codebreakers. (Compare this to the 250,000 
keyword ciphers we discussed above). 

Even getting hold of a military Enigma machine was 
impossible, but luckily the Polish cryptographer Marian 
Rejewski had worked on reconstructing it from the little 
information the Polish cipher bureau could glean from 
intelligence reports and cipher analysis.  

Just nine days before the outbreak of war he and his 
colleagues handed everything they knew about the machine, 
its workings and its weaknesses to Commander Denniston, 
head of the British Government Codes and Cypher School 
and to Dilly Knox, the British chief cryptographer. 
Together with the large team of brilliant experts at 
Bletchley they completed the work that Rejewski had 
started and cracked the Enigma machine. The story has 
been told many times now, though for decades it remained 
the most closely guarded secret, not least because rotor 
machines like the Enigma continued to be used by 
governments around the world until the end of the 1970s. 

A genuine Enigma machine would cost a lot of money now, 
but you can download several emulators for your computer, 
tablet or phone. Just search for Enigma in your app 
store. You can even find a fully featured emulator on the 
web at  

http://summersidemakerspace.ca/projects/enigma-machine/ 

These programmes are beautiful, and it can be great fun 
playing with the settings on them, but they don’t 
necessarily help to understand the workings of the 
machine. Back in 2005, as part of the story for the 
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National Cipher Challenge we invented the Pringle Can 
Enigma, which we think illustrates much better how it 
worked. Our design was based on the paper slips used by 
Turing and others in their original work on the cipher, 
but I am sure that if Pringles had existed they would 
have used the can! 

You can make one yourself for the cost of a can of 
Pringles (and who doesn't like them?). Since we 
introduced the Pringle Can Enigma to tackle the Fialka 
cipher in the National Cipher Challenge in 2005 a number 
of other people have produced their own variations on the 
theme and you will find them across the web. You can find 
out more on the resources page at 

www.cipherchallenge.org/resources/ 

Even 70 years after the war this obsolete cipher machine 
continues to fascinate and enchant fans of spy-craft, 
codes and ciphers, and steampunk engineering.  
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Transposition ciphers 
One way to minimise the impact of frequency analysis on 
the strength of a cipher is to ensure that it doesn’t 
give much away. Transposition ciphers work by jumbling 
letters rather than replacing them, so a frequency 
analysis is likely to show that the letter frequencies 
match standard English, even though the message is 
unreadable. There are several variations on this theme 
and we start with the simplest. It is a very clever 
cipher that is reliable in the field, and has the same 
size keyspace as the keyword substitution cipher. 

 

We start by writing our keyword at the head of a 
table, removing duplicate letters as with the 
keyword substitution. Here we are using the key 
BAD, giving three columns. We then enter the 
plaintext in the boxes below. The last, empty, 
boxes, if any are padded with an X (usually - 
there is no fixed rule for which character is 
used) so that all the boxes are full.  

 

B A D 

t h e 

q u i 

c k b 

r o w 

n f o 

x j u 

m p s 

o v e 

r t h 

e l a 

z y d 

o g x 
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Next, we rearrange the columns so that the 
letters in the keyword are in alphabetic 
order, ABD, and read off the rows grouping the 
letters in blocks of 5 for easy and accurate 
transmission: 

 

HTEUQ IKCBO RWFNO JXUPM SVOET RHLEA YZDGO X 

Attacking a transposition cipher 
Clearly the length of the keyword is quite 
crucial. You should be able to guess this from 
the length of the ciphertext, which will be a 
multiple of it. So, in our example the 
ciphertext has length 36 which has factors 
2,3,4,6,9, 12,18 and 36. So we could try laying out 
the text in grids of these widths and 
examining the rows.  

The best hope for a quick solution is to find a crib. If 
there is a word you think ought to appear in the cipher 
text then you could try looking for anagrams of that 
word. This is made difficult by the fact that the table 
splits the text into blocks (blocks of three in the 
example), and if your crib word does not take up an 
entire block then even the characters from the crib that 
do appear will be jumbled with other nearby characters, 
so you need a reasonably long crib. On the other hand, if 
it is too long only part of the word will appear in that 
block so you are looking for anagrams of parts of the 
crib.  

In our example if we knew, for some reason, that the text 

was likely to contain the word “jumps” we could look for 
anagrams of JUM, UMP or MPS.   

BOSS Challenge: Find an anagram of one of these strings 
in the table above. 

  

A B D 

H T E 

U Q I 

K C B 

O R W 

F N O 

J X U 

P M S 

V O E 

T R H 

L E A 

Y Z D 

G O X 
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Having found it a cryptanalyst is in a position to guess 
that the first and second columns have been transposed 
while the third has remained fixed. Checking this we find 
have cracked the cipher. 

Things are harder with longer keywords but the principle 
remains the same. Things get even tougher if the 
plaintext is not in our own language, since it is harder 
to say what makes sense. Of course, even in this case it 
may be that part of the message is in your language and 
the rest in another. In this case you might hope to crack 
the ciphertext corresponding to your native language, and 
apply the knowledge that gives you about the cipher to 
write down a decrypt of the entire message, even when the 
text is unfamiliar. 

Other (subtle) cribs: In English the letters q and u 
occur together so if they are separated either you are 
not looking at English text or they should be brought 
back together by undoing the anagram. 

Numbers often represent dates, so for example the 
letters/numbers 2, 1, S, T in proximity might represent 
21st, while 2,1,T,H might represent 12th since we do not 
write 21th in English. 

Hardening the transposition cipher 
The transposition cipher described above can be made much 
more secure by reading the ciphertext off by columns 
rather than rows. So, our message will read 

HUKOF JPVTL YGTQC RNXMO REZOE IBWOU SEHAD X 

Now the three letters P, M, S are nowhere near one 
another so you might think that anagramming won’t help, 
but it can help us to work out the length of the keyword. 
This is the key to solving the cipher as it allows us to 
lay out the text in the appropriate grid. To see this in 
action look again for the letters P, M and S. They appear 
in the 7th, 19th and 31st position in the ciphertext, so 
they are 12 apart. Thinking about how the cipher works 
suggests that the encryption table could have 12 rows 
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which is enough for us to get started. Even without a 
crib like the word JUMPS we could use the numerous cribs 
provided by the English language. The word “the” for 
example, or the fact mentioned above that “q” is almost 
always accompanied by the letter “u”. 

 

Here is an example to try 

SIEID ATTPW ADIVL SOLWO IYMRD AOSTT TDUHM AGTTT HSEOO 
TAEST EOGNU AEDLN HNRDH KIWOA MENEE INEAS NPAIT SLIAI 
AOJDN TCAET SOKEE EIULD HRAUE WSYSA IRBCT WNNSN TARHH 
SUHAS MNOAG SVEPI AGINE IOAIS EBGRS TTWYO GTLNO EVMRT 
WGTOI SAHHI ECAWP HTRAO TCRTS YRBYG  

The ciphertext has 210 characters and 210=2x3x5x7 so 
possible key lengths are 2,3,5,6,7,10,14,15,21,30,35,42,70,105,210.  

We will first try the simple crib “the” finding the 
positions of the letters T and H in the text and then the 
distances between them. 

These are tabulated below. The first row of table 1 gives 
the positions of the letter H in the text, the first 
column gives the position of T and the entries in the 
table are the absolute values of the difference of the 
positions, telling us how far apart each T is from each 
H. 

We are looking for patterns thrown up by the fact that T 
and H would often have been adjacent in a row, and so 
after permuting the columns the distance between them 
will be a multiple of the column height. Also, the column 
height will be a factor of 210, so we are looking for 
common occurrences of a multiple of a factor of 210.  To 
do that, in table 2, we take the entries in the body of 
table and compute the highest common factor of each one 
with 210. (Again, the first column denotes the position 
of an occurrence of T, while the first row denotes the 
position of an occurrence of H.)  

There are a number of different entries in the body of 
table 2 corresponding to different possible column 
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heights, and the number of times each appears is given in 
table 3. 
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 34 41 61 65 111 134 135 138 188 189 196 

7 27 34 54 58 104 127 128 131 181 182 189 

8 26 33 53 57 103 126 127 130 180 181 188 

29 5 12 32 36 82 105 106 109 159 160 167 

30 4 11 31 35 81 104 105 108 158 159 166 

31 3 10 30 34 80 103 104 107 157 158 165 

38 4 3 23 27 73 96 97 100 150 151 158 

39 5 2 22 26 72 95 96 99 149 150 157 

40 6 1 21 25 71 94 95 98 148 149 156 

46 12 5 15 19 65 88 89 92 142 143 150 

50 16 9 11 15 61 84 85 88 138 139 146 

85 51 44 24 20 26 49 50 53 103 104 111 

96 62 55 35 31 15 38 39 42 92 93 100 

100 66 59 39 35 11 34 35 38 88 89 96 

125 91 84 64 60 14 9 10 13 63 64 71 

131 97 90 70 66 20 3 4 7 57 58 65 

166 132 125 105 101 55 32 31 28 22 23 30 

167 133 126 106 102 56 33 32 29 21 22 29 

172 138 131 111 107 61 38 37 34 16 17 24 

180 146 139 119 115 69 46 45 42 8 9 16 

183 149 142 122 118 72 49 48 45 5 6 13 

197 163 156 136 132 86 63 62 59 9 8 1 

201 167 160 140 136 90 67 66 63 13 12 5 

204 170 163 143 139 93 70 69 66 16 15 8 

 

Position of the letter H in the text 

P
o
s
i
t
i
o
n
 
o
f
 
t
h
e
 
l
e
t
t
e
r
 
T
 
i
n
 
t
h
e
 
t
e
x
t
 

Table 1: the distances between 
occurrences of T and H in the text 
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 34 41 61 65 111 134 135 138 188 189 196 

7 3 2 6 2 2 1 2 1 1 14 21 

8 2 3 1 3 1 42 1 10 30 1 2 

29 5 6 2 6 2 105 2 1 3 10 1 

30 2 1 1 35 3 2 105 6 2 3 2 

30 3 10 30 2 10 1 2 1 1 2 15 

38 2 3 1 3 1 6 1 10 30 1 2 

39 5 2 2 2 6 5 6 3 1 30 1 

40 6 1 21 5 1 2 5 14 2 1 6 

46 6 5 15 1 5 2 1 2 2 1 30 

50 2 3 1 15 1 42 5 2 6 1 2 

85 3 2 6 10 2 7 10 1 1 2 3 

96 2 5 35 1 15 2 3 42 2 3 10 

100 6 1 3 35 1 2 35 2 2 1 6 

125 7 42 2 30 14 3 10 1 21 2 1 

131 1 30 70 6 10 3 2 7 3 2 5 

166 6 5 105 1 5 2 1 14 2 1 30 

167 7 42 2 6 14 3 2 1 21 2 1 

172 6 1 3 1 1 2 1 2 2 1 6 

180 2 1 7 5 3 2 15 42 2 3 2 

183 1 2 2 2 6 7 6 15 5 6 1 

197 1 6 2 6 2 21 2 1 3 2 1 

201 1 10 70 2 30 1 6 21 1 6 5 

204 10 1 1 1 3 70 3 6 2 15 2 

 

Table 2: The highest common factors of the 
distances in table 1 with 210 

Position of the letter H in the text 

P
o
s
i
t
i
o
n
 
o
f
 
t
h
e
 
l
e
t
t
e
r
 
T
 
i
n
 
t
h
e
 
t
e
x
t
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Column heights of 1,2,3,5,6,7,10 all seem 
unlikely given that the keyword or phrase 
would then have to have at least 21 letters 
in it. On the other hand, a column height 
of 30 would correspond to a keyword of 
length 7, which is quite feasible, and 
gives rise to a good number (9) of TH 
adjacencies, as marked in green in the 
corresponding 30x7 grid.  

 

S T H A I A W 

I D N O R G G 

E U R J B I T 

I H D D C N O 

D M H N T E I 

A A K T W I S 

T G I C N O A 

T T W A N A H 

P T O E S I H 

W T A T N S I 

A H M S T E E 

D S E O A B C 

I E N K R G A 

V O E E H R W 

L O E E H S P 

S T I E S T H 

O A N I U T T 

L E E U H W R 

W S A L A Y A 

O T S D S O O 

I E N H M G T 

Y O P R N T C 

M G A A O L R 

R N I U A N T 

D U T E G O S 

A A S W S E Y 

O E L S V V R 

S D I Y E M B 

T L A S P R Y 

T N I A I T G 

Height 1 2 3 5 6 7 10 14 15 21 30 35 42 70 105 

Count 60 64 26 15 27 6 12 5 7 6 9 4 6 3 3 

Table 3: the frequency of entries in the 
body of table 2 
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Notice that in three cases, rows 8, 9 and 16 
the T and H appear in columns 2 and 7 
respectively. This suggests that whatever 
order the columns should be in we should 
end up with column 2 next to (and to the 
left of) column 7. In two of the rows, 9 
and 16, there is an E in the fourth entry 
so we are led to try putting these three 
columns together in the order 2,7,4. 

 

Assuming this is not an Olde English text, 
ruling out “Twas” as a word, these three 
columns are not likely to be the first 
three, so we need something to the left and 
the possibilities for that put S,H, I or A 
to the left of the string TWA in the first 
row. Trying each in turn we get STWA, HTWA, 
ITWA or ATWA and the first two seem 
unlikely. Playing the odds and considering 
the possibilities for arranging the 
remaining three letters on the top row we 
are led to consider ITWAS.  

One possibility for the remaining columns 
reads AHITWAS but then the next row reads 
GNRDGOI which is clearly wrong.  There is 
one other way to rearrange the columns to 
get this first row, but that is also 
unlikely as it gives the second row 
ONRDGGI. On the other hand, these same 
letters might suggest the word GOING in row 
2 and a rearrangement and further 
experimentation gives the final 
arrangement, which you might recognise from 
earlier: 

 

 

S T H A I A W 

I D N O R G G 

E U R J B I T 

I H D D C N O 

D M H N T E I 

A A K T W I S 

T G I C N O A 

T T W A N A H 

P T O E S I H 

W T A T N S I 

A H M S T E E 

D S E O A B C 

I E N K R G A 

V O E E H R W 

L O E E H S P 

S T I E S T H 

O A N I U T T 

L E E U H W R 

W S A L A Y A 

O T S D S O O 

I E N H M G T 

Y O P R N T C 

M G A A O L R 

R N I U A N T 

D U T E G O S 

A A S W S E Y 

O E L S V V R 

S D I Y E M B 

T L A S P R Y 

T N I A I T G 
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 “It was hard going, but Jericho 

didn’t mind. He was taking action, 
that was the point. It was the same as 
code-breaking. However hopeless the 
situation, the rule was always to do 
something. No cryptogram, Alan Turing 
used to say, was ever solved by simply 
staring at it.”  

We stared pretty hard at this, but 
there was nothing simple about 
breaking it. I think Jericho, and 
maybe even Alan Turing, would approve.

I T W A S H A 
R D G O I N G 
B U T J E R I 
C H O D I D N 
T M I N D H E 
W A S T A K I 
N G A C T I O 
N T H A T W A 
S T H E P O I 
N T I T W A S 
T H E S A M E 
A S C O D E B 
R E A K I N G 
H O W E V E R 
H O P E L E S 
S T H E S I T 
U A T I O N T 
H E R U L E W 
A S A L W A Y 
S T O D O S O 
M E T H I N G 
N O C R Y P T 
O G R A M A L 
A N T U R I N 
G U S E D T O 
S A Y W A S E 
V E R S O L V 
E D B Y S I M 
P L Y S T A R 
I N G A T I T 
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A challenge 
Now let’s try to put together everything we have learned 
to crack the following ciphertext which is from a BBC 
news article about encryption in the modern world. 

XSFJD JMNRF RUDJV LMYFT GWWHP TUDIA HWRMS XXAHJ DNBRH 
QTOFF NWFGH GLDJJ ATQWH UEQEM DMHRH LMCGL ZAYBT HUWIC 
MHDJI CGFVZ TJHWR FYBXB HTTLX AHFLY MHDKM ZKTPS SUMRH 
FHLRU WATHU JVLTQ LZSGS NAFWL WUGXD UYCHS WZJWH SIAIY 
GYLSQ CMDDF IMXHX JNNRY REFEX NWHTM LNEDJ CYDRM HIGXL 
VJLXQ HUYLH SLUYL TSVSH NBTQK FHWTQ DNHXU DQRYG YVSQF 
MMRKJ QHZOV SIMGH HTMLN EDJQB YKGZN XSFJD JMNRF XUBIG 
JRUKP PSSOE NVSXY GNRJQ YVYXJ JLBSF JDJMT JJFJA DDLYB 
XZQAA YKXLL DIYXX JWYRF WAYML NPHQY LYHFH LRUWA THBXD 
DQUUT XLYLT SVXTL FNQYN HMJOD NABGO WSOFG HJXIK YHPYM 
HZQVX UGILE FAXXL FYITX WJJUF TIFTH LJQKJ NAJUW FLXRD 
FDGTS BOFSL YRHJL YTUEY BTYWJ FHLKR JRUMN RFXIF JVLWU 
BLKLK IKBDJ IUGIV GRYOJ UQHIF UOWCG HXWAS PHQYW XQTUS 
ASAEJ WLJLL KRJSO FGHJX UGIXK JGTYK KYIWT WZJNK FQKKI 
KRDLN IGMRO JPXWQ GRUMY HJBBB HKEJN ATGAX OLJGL MYKJV 
MQNBS JKHLT REDJX WFWSX NKJDE XBHZO VLCOJ QGMCG YVSGI 
NYKGB CMBDK JHVWB HYYWI XJNHZ BRJQX PFUAN NAJDD QCXXV 
UTLXI VGRYG TWSGF XALUY IKNHK FATNQ KYNAJ JWWGT SVTJW 
TZVWY BXNUW SWKDS LNIGX BKYYF XGAIH HYVMK ZBHLW SNEDV 
UWUFG OWRYL XDYJM KNJGW INXPS YBXRD LNWTQ DFFFR XLKGS 
TQOAJ XVTGW HLTHN WWMEF LVGUK JSSYN XWQKM CWIHF BCMML 
FYBXR HKXUZ JVSSX NXHVY BXRWG WYVWH SYYMM HEFWA NQWZM 
XIWGJ HVWBH YNAJP LMILJ FGIYL WHNTF OJGSW INSGL MYNXH 
GKMXH UWYEX DVLMU MBHJJ MAFUW IUFTQ YYBHX HOMIG JHVJX 
MTFGR GNSLU FNXXH UZLXQ BLMYL JDJJE GTZFF MLDPE JNKNF 
WSWKD SLNIG XBKYY FXDFI BTAHS BYTPQ WXMBS WZFNX AHJDI 
GJLFA IEAHV MULYR HTMLJ VKYBX XDEJM XYRXX YVWHL PYRX 

 

First, we carry out frequency analysis of the whole text 
and compare it to the standard distribution in English. 
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The following chart of the frequencies, ranked most to 
least common in each case, allows us to compare the 
frequency distributions. We see that the ciphertext 

letter distribution, while not uniform is much flatter 
and lacks the distinctive spike at the left, suggesting 
that the frequency distribution of letters is not a good 
match to the standard English language. From this we 
conclude that the text is not encrypted with a 
transposition or a mono alphabetic substitution cipher 
like one of the shifts, or the keyword substitution we 
studied above. 

So, we guess that the text has been encrypted with a 
polyalphabetic cipher, and since we only know about the 
Vigenère cipher we will assume that is what we have here.  

The first step is to try to find the likely keyword 
length, which we will denote k, which is at least 2 since 
we are not considering a mono-alphabetic substitution. To 
do this we will compute the index of coincidence for 
sequences of letters spaced k apart in the ciphertext. 
Start by taking k=2. We consider the sequence of every 
other letter X.F.D.M.R.R.D.V.M.F.W … H.P.R, starting at 

0

3.5

7

10.5

14
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the first. This sequence has index of coincidence 
0.04695494261123 which is not close to the ioc of 
standard English text. 

Next, we try k=3 and examine the sequence XJMF… of every 
third letter. This has ioc 0.054357657988021 which is closer 
to the standard but still not good. Taking k=4,5,6,7 in turn 
we get the following table of index of coincidence. 

 

k 2 3 4 5 6 7 8 9 

ioc 0.046
95 

0.054
35 0.04616 

0.04761
4 

0.06920
9 

0.04690
7 

0.04722
8 

0.04809 

 

 

Notice that for k=6 we obtain an ioc of 0.069209, which is 
very close to the expected value of 0.0668 for English 
text, whereas the other values of k give a much lower 
value, which suggests that key length is k=6. 

 

The next step is to split the text into blocks of 6 and 
to carry out frequency analysis on each of the 6 lists of 
ciphertext characters this gives us. Here is the first of 
the six lists that gives us: 

XMDFPHXBFHAEHGTMGHXXMKMRULAGHHGMXRXLYGXHTBWXGMHMLBXMBKEGV
BMAXKYRLLRBUTFMBFKHGXTFLAXTLYTLMFBKGOFHHTELFGTWKKGXMBALKB
TWKHOGNMVWZPAXXGXKTATTXKGFHBEFLKNXTRTVTEKXWMXZNXVMAXVALLO
NNXXMAFHGMNXXLGLKKGFTTBXGELLXXVR 

Here, X is the first ciphertext character, M is the 
seventh, D is the thirteenth and so on. 

The most common letter by far is X, so we deduce that e 
has been encrypted by X in this sequence, and since the 
Vigenère cipher uses Caesar shift ciphers this gives a 
decrypt of  
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etkmwoeimohlonatnoeetrtybshnoonteyesfneoaidentotsietirlnc
itherfyssyibamtimroneamsheasfastmirnvmooalsmnadrrnetihsri
adrovnutcdgwheenerahaaernmoilmsrueayacalredteguecthechssv
uueethmontueesnsrrnmaaienlsseecy 

 

If this looks like nonsense, don’t worry, it is. This 
just gives us the decrypt of the first, seventh, 
thirteenth, twentieth letters of the plaintext and so on. 
We have to decipher the other five columns and inter-
splice them to get the decrypt. 

The next sequence, which begins SNJT is a little tougher. 
The frequency analysis shows that J is the most common 
letter at 11.33% and then X at 10.84%, so either of the 
shifts e to J or e to X is possible. We will leave it 
there for the moment and move on to the third list 
beginning FRV … In this list H is clearly the most common 
letter so we assume that the shift cipher mapping e to H 
has been used and see if we can apply our knowledge that 
“the” is a very common triple to settle the ambiguity 
over list 2. 

 

To do so we can write each list as a column and look for 
the pattern t_e across the first three columns after 
decrypting columns 1 and 3.  We find this pattern in rows 
23, 48,109,164 and 176 where the encryption string is 
MRH, MGH, MYH, MMH and MBH, so if any of these are an 
encryption of the then h must be encrypted as R, G, Y, M 
or B. These correspond to the affine shifts mapping e to 
O, D, V, J or Y. We have already seen from our frequency 
analysis that the most likely encryption of e is either 
to map it to J or to X, and putting this together with 
the list we just produced that makes the mapping to J 
more likely so we assume that our second column is 
enciphered using a shift mapping e to J and make that 
substitution.  
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 enc_ _ _tio_ _ _kes_ _ _mod_ _ _wor_ _ _oro_ _ _eve_ _ 
_ime_ _ _mak_ _ _obi_ _ _hon_ _ _llb_ _ _ome_ _ _ngw_ _ 
_acr_ _ _tca_ _ _nas_ _ _oro_ _ _ewe_ _ _eve_ _ _tca_ _ 
_rom_ _ _tme_ _ _ypt_ _ _bes_ _ _sup_ _ _hat_ _ _nsa_ _ 
_ont_ _ _onf_ _ _nti_ _ _tya_ _ _ecu_ _ _yto_ _ _eit_ _ 
_sib_ _ _fyo_ _ _nsi_ _ _ele_ _ _oni_ _ _ans_ _ _ion_ _ 
_don_ _ _epa_ _ _nts_ _ _tho_ _ _oul_ _ _tbe_ _ _sib_ _ 
_ith_ _ _enc_ _ _tio_ _ _idd_ _ _rkm_ _ _lis_ _ _nio_ _ 
_ctu_ _ _inc_ _ _tog_ _ _hya_ _ _eun_ _ _rsi_ _ _fsu_ _ 
_yat_ _ _sim_ _ _ste_ _ _ypt_ _ _isa_ _ _bou_ _ _ans_ _ 
_min_ _ _tel_ _ _ibl_ _ _mbe_ _ _rte_ _ _oun_ _ _ndi_ _ 
_esi_ _ _ast_ _ _mof_ _ _sen_ _ _her_ _ _ema_ _ _any_ _ 
_sto_ _ _for_ _ _att_ _ _sfo_ _ _tio_ _ _mes_ _ _igh_ _ 
_rwa_ _ _nds_ _ _ver_ _ _mpl_ _ _ost_ _ _olv_ _ _app_ _ 
_let_ _ _sfo_ _ _mbe_ _ _ndu_ _ _ath_ _ _dot_ _ _ran_ _ 
_rma_ _ _nho_ _ _ern_ _ _tte_ _ _ich_ _ _hod_ _ _sed_ _ 
_res_ _ _ing_ _ _amb_ _ _dat_ _ _rea_ _ _oul_ _ _ven_ _ 
_nts_ _ _uth_ _ _twa_ _ _cry_ _ _ddu_ _ _gwo_ _ _war_ _ 
_hea_ _ _ess_ _ _eds_ _ _not_ _ _evi_ _ _rie_ _ _ain_ _ 
_heg_ _ _ans_ _ _aus_ _ _eir_ _ _ryp_ _ _nsy_ _ _msd_ _ 
_ots_ _ _ici_ _ _lys_ _ _mbl_ _ _ssa_ _ _rig_ _ _usm_ _ 
_ema_ _ _ala_ _ _ysi_ _ _all_ _ _cod_ _ _ack_ _ _lai_ _ 
_rep_ _ _ern_ _ _dde_ _ _thi_ _ _eme_ _ _ges_ _ _use_ _ 
_emt_ _ _cre_ _ _the_ _ _hin_ _ _edt_ _ _cry_ _ _hem_ _ 
_sec_ _ _sre_ _ _ved_ _ _und_ _ _use_ _ _ecr_ _ _eys_ _ 
_twe_ _ _har_ _ _mon_ _ _ose_ _ _nee_ _ _toc_ _ _uni_ _ 
_ese_ _ _ely_ _ _sea_ _ _now_ _ _sym_ _ _ric_ _ _ryp_ _ 
_nsy_ _ _msa_ _ _ave_ _ _akn_ _ _int_ _ _eve_ _ _nei_ _ 
_lve_ _ _sto_ _ _ses_ _ _esa_ _ _eto_ _ _cre_ _ _ys 

 

 

Now we are getting somewhere. We know this is an article 
about encryption, and right at the start of the text we 
see the pattern enc_ _ _tio_. This corresponds to the 
ciphertext XSFJD JMNRF suggesting that ryp in positions 
4,5,6 have been enciphered as JDJ in turn using shifts 
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mapping r to J, y to D and p to J. Trying the J to r 
shift as the decrypt on the fourth column, the D to y to 
the fifth and the J to p on the sixth gives us the 
following 

encryptionmakesthemodernworldgoroundeverytimeyoumakeamobi
lephonecallbuysomethingwithacreditcardinashoporonthewebor
evengetcashfromanatmencryptionbestowsuponthattransactiont
heconfidentialityandsecuritytomakeitpossibleifyouconsider
electronictransactionsandonlinepaymentsallthosewouldnotbe
possiblewithoutencryptionsaiddrmarkmanulisaseniorlecturer
incryptographyattheuniversityofsurreyatitssimplestencrypt
ionisallabouttransformingintelligiblenumbersortextsoundsa
ndimagesintoastreamofnonsensetherearemanymanywaystoperfor
mthattransformationsomestraightforwardandsomeverycomplexm
ostinvolveswappinglettersfornumbersandusemathstodothetran
sformationhowevernomatterwhichmethodisusedtheresultingscr
ambleddatastreamshouldgivenohintsabouthowitwasencrypteddu
ringworldwariithealliesscoredsomenotablevictoriesagainstt
hegermansbecausetheirencryptionsystemsdidnotsufficientlys
cramblemessagesrigorousmathematicalanalysisbyalliedcodecr
ackerslaidbarepatternshiddenwithinthemessagesandusedthemt
orecreatethemachineusedtoencryptthemthosecodesrevolvedaro
undtheuseofsecretkeysthatweresharedamongthosewhoneededtoc
ommunicatesecurelytheseareknownassymmetricencryptionsyste
msandhaveaweaknessinthateveryoneinvolvedhastopossessthesa
mesetofsecretkeys 

The shift ciphers used have therefore been shifts by 19, 5, 
3, 18, 5, 20 respectively. How would the spies have remembered 
this sequence? It might have been chosen as the lottery 
numbers one week, but actually it spells out the word 
SECRET, with the unusual convention a=1, b=2, c=3 and so 
on, perhaps to confused the enemy.  

It may feel like we cheated a bit using the crib, but 
that is how real-world cipher cracking works. Modern 
ciphers are highly sophisticated algorithms designed, as 
far as possible, to conceal the patterns and rhythms of 
language so that simple frequency analysis is at best 
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unreliable, and on its own hopelessly inadequate. 
Sometimes a crib is what you need, and since there is 
always a context to any communication a crib is often 
available.  

In the war much was made of the fact that the naval 
enigma was used to transmit weather reports. Comparing 
these with reports from Allied vessels in the same area 
was sometimes all it took to crack open the key to that 
day's transmissions. Careless use of call signs or 
mission codewords can also fatally weaken the security of 
a cipher. 

This was a far from easy exercise, and it used everything 
we know about letter frequencies, common patterns, cribs 
and the index of coincidence. Combining them has allowed 
us to decipher a message that would have defeated all but 
the best cryptographers in the past.  

Deciphering a secure message is a combination of hard 
work, luck, knowledge and skill. But above all it takes 
perseverance. When one tool lets you down you need to try 
another, and another. And another.  

As Turing said,  

“No cryptogram was ever solved by simply staring at it”
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Notes 
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