
National Cipher Challenge 2016
How the winners cracked 8B

On the 15th
December 2016 we
published the last
part of Fighting
Gravity, the
fifteenth National
Cipher Challenge.
Competitors had
wrestled with
Caesar Shift
ciphers, affine
shifts, keyword
substitutions,
Vigenere ciphers
and transpositions
of several sorts.
They were about
to be faced with a
Hill cipher, based
on matrix algebra
in mod 26
arithmetic. And
that was just part
A of the Challenge.
Part B, the part

that really counted for the final competition standings was an entirely
new custom cipher designed by Harry to trip them all up.

The hardest part of designing the challenge is to keep it fresh and to try
to stretch the incredibly able competitors who come back year after year
to learn more about ciphers and themselves. Sometimes the final

challenge is about processing a lot of data to try to find a key that is
hidden like a needle in a haystack. This time Harry tried something a
little different.

“Challenge 8B came as quite a shock, I was expecting a cipher
which had a known algorithm and its strength coming from the
vast key space. Enigma, 3x3 Hill and playfair cipher were some I
was preparing for. However, 8Bs complexity did not come from a
large key space but from that the algorithm was unknown.”

Alex Barter, Gold Medallist.

So how did they do it? Hard work and genius I guess, so maybe we
should try to learn from them. Below they have given us a little glimpse
into how they tackled the cipher. Maybe this will help you for next year’s
competition. We hope so. Enjoy!

Alex Barter from The Cotswold School really captures the spirit of
experimentation that is the heart of the process. A lot of things he tried
didn't work on their own, but did contribute to his understanding of
what was going on. Even something as simple as counting the
characters really helped:

“The Challenge looked a bit like this but about 600 times
longer…
10200 20020 12002 11120 00210 02010 21012 10021 10201
12011 20002

To start with I noticed that it only has 3 characters in; 0, 1 and 2
(quite obvious). I immediately thought it may have something
to do ternary (base 3). So I removed the spaces and counted
the characters which totalled:
32545
which has the factors…
1, 5, 23, 115, 283, 1415, 6509, 32545

So I checked how many unique combinations in the text there
were in blocks of all the factors. For blocks of 5 there were 135
combinations, if there was a 26 letter alphabet encoded in
ternary I would expect 26 or less (since some letters may not
have been contained in the text). So it probably wasn’t ternary.

I was then thinking it was some special cipher that only used 3
characters, a cipher I had not come across before. However
after searching the internet for a few minutes I did not find
anything.

My next thought was that it could be a form of morse code,
where the 0 = . (dot), 1 = - (dash) and 2 = x (separator between
morse characters). However, I examined the text and found that
the longest separation of 2 consecutive 2s was 19; there is no
morse character with 19 symbols so it couldn’t have been
morse. I did test it for 0 = - (dash) and 1 = . (dot) too just in case.

I was a bit stuck so I read though 8A to see if there were any
clues, but I could not find any.

I then checked the title (as last year the title was the first
sentence of the message) for clues,
“You can’t make an omelette without breaking eggs”, I thought
that could be a clue as when I looked it up online for its
meaning, one website said “In order to achieve something, it is
inevitable and necessary that something should be destroyed”.
This gave me that idea that maybe the 2s had been specially
put in there to throw us off. I tried converting the 2’s to 1’s, and
2’s to 0’s and completely removed the 2’s altogether and
converted the result from binary into numbers, however for all
3 attempts some numbers were larger than 26 so couldn’t have
fitted the 26 letter alphabet. I did also note that removing all
the 2’s resulted in the text still being a multiple of 5 – which
could be significant.

I then split the text into blocks between the 2 and wrote them in
rows, e.g.
10200200201200211120002100201021012
10
00
00
01
00
111
000
100
010
101

I noticed that each 5 rows (or every multiple of 5 rows in some
cases) they were the same length. So I thought that each
column of every 5 rows was a letter written in binary (I tried
both ways of writing it from top to bottom and bottom to top).
So I converted each column to an integer, with the binary
number written from top to bottom. To my surprise they were
all below 26 which could have meant I successfully converted
the numbers to characters. I then put the text into my identify
program which uses custom-pre-generated average statistics
created from a database of plaintexts of previous challenges
and other random texts for many different ciphers. It identified
it as a simple substitution cipher, with a very good score.

I then put in my simple substitution solver which uses
simulated annealing to find the key and after 2 cycles bam.
English!”

Code breaking isn’t always about individual genius, team work was
essential in breaking the Enigma cipher even when it depended on deep
individual insight. In recognition of this we always award team prizes as
well. This year the Gold Medal winning team of Liam Zhou and Benjamin

Dayan cracked Challenge 8B on the first day with a mix of analytic and
coding skill. Though it sounds like they might need to work on tidying
up and documenting their code:

“We've done the challenge for a number of years and have
enjoyed it a lot and learnt a lot of cool stuff. Liam and I do have a
bunch of code we wrote and applied for the challenges. It's a bit
messy, I have python code and Liam has C#. My code is also a bit
mixed together.”

Benjamin Dayan, Westminster School

Their key idea was that the lack of 2’s in the cipher text must be
significant:

“We found there weren't very many 2s, which was odd. We tried
weird combinations of ascii, sometimes including the 2s or
removing them or replacing them with stuff. Then we found
that splitting by the 2s yielded such an ordered structure, so we
thought that must be it.

So we split the 0s, 1s and 2s by the 2s. You then get a whole
bunch of chunks, where there are sets of 5 chunks which all
have the same length. So like 01, 10, 11, 11, 00 is one set of 5
chunks. I split up the chunks into these sets of 5. I then took the
first digits of the five two digits, so here 0 1 1 1 0 is the first five
digits. Next I took the second digit off the set of 5, here 1 0 1 1 0 .
Afterwards you go to the next set of 5 and extract their digits.
And so on.

Finally I alphabetized the results, as there only 26 five digit
binary combinations, despite 32 possible values. I ran it
through my mono solver, and that was it.”

Some competitors ask if it is cheating to use a computer to break the
challenge, but doing that wouldn't have helped on its own. To crack this

one you needed to think very hard about what was going on. This wasn't
a standard cipher like a lot of the ones we use in the Challenge. It was
based a little on the bifid cipher, a very well known paper and pencil
algorithm, but twisted by the use of 2 as a null separator to remove the
regular rhythm of a bifid cipher that is its great weakness. It wasn’t
possible to plug the cipher text into an elementary cipher cracker and
ask it to break the text some real thought had to go into it first.

James Hogge, this year’s Silver Medallist, describes his process well:

“My first thought was that I needed an alphabet that I could
work with rather than 1s 2s and 0s. After factorising the length
of the ciphertext and seeing that the only small factor was 5, I
tried converting 5 letter groups to decimal (assuming that they
were ternary numbers) but there were over 140 unique
combinations so it couldn't have been a straight map to the
alphabet. Another thought I had was that it could be some form
of a Gronsfeld cipher where the key had some larger and some
smaller numbers. To see if this was true, I checked whether the
floor of each number when divided by 26 was periodic. This was
not true.

At this point, I started playing around with 2 being used as a
special character because I had noticed that it never occurred
in groups larger than one so the next thing I checked was the
number of 2s in the message. This was also a multiple of 5. This
seemed like a good lead because once the twos are removed,
you're left with a binary message and the smallest number of
bits you need to represent the entire alphabet is 5.

After researching more classical ciphers on Wikipedia I thought
that it could be some form of a null cipher. There was a two at
the very end of the message so I thought that perhaps it could
be that every number preceding a 2 was part of the actual
message and the rest was actually gibberish. When this part of
the message was put together and split into 5 digit groups,

there were only 22 unique groups. Less than 26 though so it
could have been a possibility. There was the mention of eggs in
the title so I tried using the baconian alphabet (excluding J and
V) as well as the two common 25 letter alphabets that seem to
occur in classical cryptography (excluding J or excluding Q) and
finally the whole alphabet. I tried 2x2, 3x3 Hill ciphers,
monoalphabetic substitution and Bifid (where appropriate)
however nothing gave results.

After that I tried splitting the ciphertext on the 2s. This was
more promising because I noticed the pattern where the
lengths of the groups always occurred in groups of 5. First idea
that came to mind was what happens if I take the first digit of
each section and say that that is one character from the
ciphertext then the second digit of each section etc. This then
gave me the 26 unique 5 letter groups. I arbitrarily assigned
them to letters and ran it through Hill and monoalphabetic
substitution programs and the monoalphabetic program gave
readable English.”

Team Amgine from Cedar’s Upper School took a similar approach to
Benjamin and Liam using a range of tools including spreadsheets,
Python scripts and their own brains. They described their thought
processes as follows:

“At first, seeing that the text was made up of the digits 0, 1 and
2, we suspected that the message was composed of the letters
of the alphabet encoded in 3-trit ternary, but, after trying to
convert back to characters, we discovered this resulted in less
than 26 different characters. We also briefly considered an
incomplete Trifid cipher (encouraged by the Bifid for 7B), but
rapidly dismissed this idea. Looking more closely at the text, we
saw that twos never appeared next to each other. This implied
that the twos were separating the binary digits into blocks of
some description.

We then examined the possibility that the twos had been added
as filler, serving no purpose other than to confuse the
cryptanalysist. However, simply removing them and then
converting from 5-bit binary (as was used in the 2014 8B cipher)
still yielded more than 26 different values.
Our confidence that the message was encrypted using 5-bit
binary was boosted by the use of a small spreadsheet to find
the relative frequencies of the different digits, which showed
that the frequencies of '1' and '0' were indeed similar to those
of English text (using 26 characters) encoded in 5-bit binary.
On closer inspection, we noticed that the blocks of binary digits
(obtained by removing twos) were grouped in sets of 5 blocks of
the same length, but there was a large variation between the
lengths of different sets of 5 blocks. We immediately wondered
whether these groups of 5 blocks corresponded to the five
digits of 5-bit binary. However, we knew that this would result
in an abnormally long message (>5000 characters), so we
frantically racked our brains and the internet for other
possibilities - until we remembered that part A had also been
unusually long.
The simplest way of converting the binary back to text, using
the blocks we had seemed to be to take every set of 5 blocks of
digits that were of equal length, stack these blocks on top of
each other within the set and read down in columns to give us
our 5-bit numbers, repeating this for every set of 5 blocks,
which would give us a list of binary numbers between 0 and 31.
We wrote a program to do this, converting the binary to
base-10, then using this to produce characters, and the result
was a very long string of strange characters- but only 26
characters (of 32 possible) were present. We had effectively
cracked the first stage of encryption but we were not all the way
there yet. We altered our program to decode the binary
rearranging the digits using every permutation possible within
the sets of 5 blocks- every possible way to stack the blocks on
top of each other in columns of 5, in case this was another stage
of encryption. This did not produce anything like English, but

the last few decrypts all contained only the numbers 0-25 which
could represent the alphabetic characters.
We tried converting the numbers to the 26 different alphabetic
characters then fed one of these results into our assistance
interface- a python 3 user interface that uses most of the many
python programs that we have written over four years of cipher
challenges, and attempts to identify the type of cipher using
various tests. On entering the alphabetic text into the interface,
the program told us that the text had an index of coincidence of
about 1.7- this means that the text has a distribution of letter
frequencies very different to what would be expected if each
character had an equal chance of occurring. This strongly
suggested that the text was a substitution cipher- letters in
English have very different frequencies, and index of
coincidence is not affected by Monoalphabetic Substitution.
The interface correctly identified the cipher, and from it we
initiated our substitution breaker program In less than a
minute, we had an answer, which we then submitted, and
began to hurriedly add spaces and read the message to check
that our program had not got a pair of very infrequent letters
wrong. It had not – Success!

Sometimes inspiration strikes in odd ways. One of our Bronze
Medallists, Elizaveta Sheremetyev, found it in the Christmas card I
posted on the forums a few hours before the competition:

“Harry’s Christmas card, that was posted way too early to be a
Christmas message and strangely enough almost exactly 2 hours
before Challenge 8 was released, seemed like a hint. It had
sequences of 1,3,7,9,13,8,2 stars and I didn’t see how these
corresponded to words or letters in any way. The Christmas card
seemed to have a wave pattern, which brought me to the idea of
printing out the blocks of binary, that I got from splitting the
cipher text at the 2’s, vertically.
I saw that the blocks of binary were in fives of the same length,
there are 32 different numbers that you could represent with 5-

bits which covers the number of letters in the alphabet and is not
much bigger that it. It seemed likely that the next step would be
to read the code downwards.”

The Christmas card wasn't actually intended as a clue, but in thinking
around the problem Elizaveta found a different way of looking at the
cipher that led directly to the solution. I am reminded of the quote from
Robert Harris’s novel Enigma:

“It was hard going, but Jericho didn’t mind. He was taking action,
that was the point. It was the same as code-breaking. However
hopeless the situation, the rule was always to do something. No
cryptogram, Alan Turing used to say, was ever solved by simply
staring at it.”

Having reduced the encryption to a standard substitution cipher
Elizaveta fed it into a programme she had written to crack it. This was a
simulated annealing programme, which is a fancy way of saying that it
makes intelligent guesses by trying random keywords and testing the
solution they give for how realistic it is, keeping the best solutions and
improving them a bit and trying again.

I had a simulated annealing algorithm that generated a random
shuffled key to decode the cipher text with, for the next 1000
iterations it worked from that key randomly swapping 2 letters.
If within 1000 iterations it hadn’t found a solution it would start
with a new randomly shuffled key.
To judge if a key is better than the previous one I used a file with
quadgram frequencies (http://practicalcryptography.com
characterisation/quadgrams/). I made a dictionary where each
quadgram corresponded to a logarithm 
of that quadgram’s frequency count divided by the total
number of appearing quadgrams. To judge the 
“quality” of the decoded text I summed the logarithms of the
quadgrams appearing in that text to get a

number, the bigger the number - the closer the text is to
English.

I hope this gives you some idea how to go about analysing a strange
new cipher and to exploit its weaknesses. You can download our
codebreaking handbook from the National Cipher Challenge website to
get more hints and tips on how to get started. We will be updating it
(and the website) with more information ready for the new competition
in October. Please do hang around!

Harry

